The influenza m2 cytoplasmic tail changes the proton-exchange equilibria and the backbone conformation of the transmembrane histidine residue to facilitate proton conduction.

نویسندگان

  • Shu Y Liao
  • Yu Yang
  • Daniel Tietze
  • Mei Hong
چکیده

The influenza M2 protein forms an acid-activated tetrameric proton channel important for the virus lifecycle. Residue His37 in the transmembrane domain is responsible for channel activation and proton selectivity. While the structure and dynamics of His37 have been well studied in TM peptide constructs, it has not been investigated in the presence of the full cytoplasmic domain, which increases the proton conductivity by 2-fold compared to the TM peptide. We report here (13)C and (15)N chemical shifts of His37 in the cytoplasmic-containing M2(21-97) and show that cationic histidines are already present at neutral pH, in contrast to the TM peptide, indicating that the cytoplasmic domain shifts the protonation equilibria. Quantification of the imidazole (15)N intensities yielded two resolved proton dissociation constants (pKa's) of 7.1 and 5.4, which differ from the TM result but resemble the M2(18-60) result, suggesting cooperative proton binding. The average His37 pKa is higher for M2(21-97) than for the shorter constructs. We attribute this higher pKa to direct and indirect effects of the cytoplasmic domain, which is rich in acidic residues. 2D (13)C-(13)C correlation spectra reveal seven His37 Cα-Cβ cross peaks at different pH, some of which are unique to the cytoplasmic-containing M2 and correspond to more ideal α-helical conformations. Based on the pH at which these chemical shifts appear and their side chain structures, we assign these conformations to His37 in differently charged tetramers. Thus, the cytoplasmic domain facilitates proton conduction through the transmembrane pore by modifying the His37-water proton exchange equilibria and the His37 backbone conformational distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMR detection of pH-dependent histidine-water proton exchange reveals the conduction mechanism of a transmembrane proton channel.

The acid-activated proton channel formed by the influenza M2 protein is important for the life cycle of the virus. A single histidine, His37, in the M2 transmembrane domain (M2TM) is responsible for pH activation and proton selectivity of the channel. Recent studies suggested three models for how His37 mediates proton transport: a shuttle mechanism involving His37 protonation and deprotonation,...

متن کامل

Proton Release from the Histidine-Tetrad in the M2 Channel of the Influenza A Virus

The activity of the M2 proton channel of the influenza A virus is controlled by pH. The tautomeric state and conformation of His37, a key residue in the M2 transmembrane four-helix bundle, controls the gating of the channel. Previously, we compared the energetics and dynamics of two alternative conformations of the doubly protonated state at neutral pH, namely, a 4-fold symmetric "histidine-box...

متن کامل

Conformational plasticity of the influenza A M2 transmembrane helix in lipid bilayers under varying pH, drug binding, and membrane thickness.

Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). (13)C and (15)N ch...

متن کامل

pH-dependent conformation, dynamics, and aromatic interaction of the gating tryptophan residue of the influenza M2 proton channel from solid-state NMR.

The M2 protein of the influenza virus conducts protons into the virion under external acidic pH. The proton selectivity of the tetrameric channel is controlled by a single histidine (His(37)), whereas channel gating is accomplished by a single tryptophan (Trp(41)) in the transmembrane domain of the protein. Aromatic interaction between these two functional residues has been previously observed ...

متن کامل

Exploring Histidine Conformations in the M2 Channel Lumen of the Influenza A Virus at Neutral pH via Molecular Simulations

The pH-regulated M2 proton channel from the influenza A virus has a His-tetrad in its transmembrane (TM) domain that is essential for proton conduction. At neutral pH, the tetrad has been observed in two distinct configurations, the "His-box" and "dimer-of-dimers", with similar backbone structures suggesting competing models for proton conduction. Here, we propose that both conformations can pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 137 18  شماره 

صفحات  -

تاریخ انتشار 2015